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Classification of EEG Signals as Time-series

Classification of electroencephalograph (EEG) signals is the common de-

nominator in EEG-based recognition systems that are relevant to many

applications ranging from medical diagnosis to EEG-controlled devices

such as web browsers or typing tools for paralyzed patients [4].

I EEG signals can be considered as multivariate time-series.

IThe k-nearest neighbor (k-NN) method using Dynamic Time Warping

(DTW) as distance measure was reported to be competitive, if not superior,

to many state-of-the-art time-series classifiers [2].

Our Contribution: Process

We use DTW in order to construct real-valued features which results in

projecting multivariate time-series into a vector space:

IA random subset D of the training data is selected;

IThe distance of the remaining training data from the selected instances

D is calculated using multivariate Dynamic Time Warping (DTW) [2];

I The training set is mapped into an |D|-dimensional vector space, where

each feature corresponds to the distance from a signal in D.

IAny conventional classifier may be trained in this projected representation.

We propose to use logistic regression [3].

ITo classify a new instance x ′, its distances from D are calculated, hence

the previously trained classifier (logistic regression) can predict its class

label from the projected representation.

Figure 1 illustrates the mapping procedure, while Figure 2 shows an example

two-dimensional projection.
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Figure 1: Projection of signals into a vector space by process. The horizontal (vertical) axis

of the coordinate system correspond to the distances from the first (second) selected signal.

Figure 2: The result of projecting the EEG signals into a two dimensional vector space. Signal

either correspond to normal brain activity or epileptic seizures [1].
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Figure 3: Average accuracy of classifiers over 10×10-fold cross-validation. The bullets show whether the accuracies significantly (p < 0.01) di�er from those of process. The numeric values of

average accuracies and standard deviations are reported in the Proceedings.

Experiments

In order to evaluate our approach, we used the publicly available EEG

dataset
a

from the UCI machine learning repository [6].

I In the Disease context the task is to recognize whether a person is a�ected

by the disease (alcoholism) or not.

I In the Stimulus context we classified signals according to stimuli.

I The Stim.H, Stim.A, App.I and App.II contexts extend Stimulus by restricting

the data used in training/testing phases to signals from healty/alcoholic

individuals only.

We compared the accuracy of process to the following baselines:

I k-nearest neighbor using Dynamic Time Warping (DTW) distance;

IHubness-aware classifiers hw-kNN, hfnn, nhbnn and hiknn [5];

I Logistic regression, Support Vector Machines (SVMs) and neural networks

from the Weka so�ware package.
b

a
h�p://archive.ics.uci.edu/ml/datasets/EEG+Database

b
h�p://www.cs.waikato.ac.nz/ml/weka/
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Conclusions and Outlook

IThe proposed projection approach may be useful to represent EEG sig-

nals of a real dataset in a low dimensional vector space and may allow

exploratory analysis of the data by visual inspection.

IOne may consider more advanced selection strategies for D other than

random selection.

IThe vector representation of the data constructed by process allows to

use (almost) any vector classifiers including ensemble methods and semi-

supervised classifiers. The projection might be useful for clustering or

anomaly detection.
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