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Link prediction with
matrix completion techniques



Matrix completion for biomedical tasks

Drug-target prediction
Prediction of side effects of drugs
Link prediction in biological networks

Analysis of DNA-methylation in case of
cancerous tissues
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Bipartite graphs
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http://commons.wikimedia.org/wiki/File:Apple_Il.jpg



Bipartite graphs

. Side
effe

targets




Bipartite graphs




Matrix representation of bipartite
graphs




Matrix representation of bipartite
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Matrix factorization for link
prediction
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Matrix factorization for link
prediction
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Matrix factorization for link
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K. Buza, |. Galambos (2013): An Application of Link Prediction in Bipartite
Graphs: Personalized Blog Feedback Prediction, 8th Japanese-Hungarian
Symposium on Discrete Mathematics and Its Applications



Combining (slightly) different solutions
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Evaluation of link prediction

* Gold standard = ,right solution”

- Split the data into disjoint train and test sets
- Split the data into three disjoint sets: train, test1 and test2



Example

* Prediction algorithm predicts 100 news links

 All of them are present in the gold standard
(all of them are real new links) — performance: 100 %



Example

* Prediction algorithm predicts 100 news links

 All of them are present in the gold standard
(all of them are real new links) — performance: 100 %

e But: in total, there are 1000 new links in the gold
standard (i.e., additionally to the predicted ones, there
are 900 other new links in reality) — performance: 10 %



Evaluation of link prediction

* Gold standard = ,right solution”

- Split the data into disjoint train and test sets

- Split the data into three disjoint sets: train, test1 and test2
« Performance measures

- Precision:

P = (# predicted links that are present in gold standard) / (# all predicted links)
- Recall:

R = (# predicted links that are present in gold standard) / (# all links in gold
standard)

- F-measure: harmonic mean of precision and recall
(see also http://en.wikipedia.org/wiki/F1_score)

* Otherissues
- evaluation protocols, statistical significance


http://en.wikipedia.org/wiki/F1_score
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