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Background

Gene expression profiles were found to be highly relevant for safety assess-

ment, diagnostics and prognostics applications [1, 5]. Recent advancements

in high-throughput sequencing technology lead to growing interest in pre-

dictive classification (see Figure 1) models for gene expression data. For

example, Ion AmpliSeq
TM

technology delivers simple and fast library con-

struction for a�ordable targeted sequencing of specific human genes [3].
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Figure 1: Machine learning for gene expression data.

Hubness in Gene Expression Data Sets

IA gene expression instance may contain expression values of thousands

of genes. Therefore, instances are represented as vectors in very high-

dimensional Euclidean space.

IHubness is a phenomenon in high-dimensional data sets, such as gene

expression data, that challenges classification algorithms [4].

IHubs are instances that are similar to a suprisingly large number of other

instances according to some measure of similarity, e.g. Euclidean distance
d(xi, xj) =

√∑
`(xi,` − xj,`)2, where xi,j is the expression value of the `th

gene in the ith sample.

IHubness-aware classifiers (hw-knn, hfnn, nhbnn, hiknn) [6] are one of the

most promising research directions aiming to enchance classificitation

in high-dimensional spaces. To compare our approach to hubness-aware

methods, we run hiknn with parameter k = 5 as a baseline.

Our Contribution

IWe a�empt to mitigate hubness artefacts with dimensionality reduction

via instance projection using base points (see Figure 2). A logistic regression
classifier is trained on the resulting representation.

IOur results show that a single projection classifier has suboptimal accu-

racy (see Figure 3 and Table 1). However, it is very simple to construct an

ensemble of such learners, which increases accuracy substantially.

I Each member of the ensemble performs projection using a di�erent ran-

dom base point set. Prediction output is decided by majority vote. We call

this method progress: Projection-Based Gene Expression Classification.
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Figure 2: The distance of the instances is measured from the randomly selected projection

base points p1, p2, . . . , p10, which are instances themselves. This projection represents the

instances as vectors of distances instead of vectors of gene expressions.

Experimental Evaluation

In our ongoing research, we ran classification experiments on two publicly

available data sets:

IThe Breast Cancer data set consists of 32 ER– and 65 ER+ specimens

from breast cancer patients with 7650 genes [5].

IThe Colon Cancer data set consists of 40 colon tumor tissue samples

and 22 normal colon tissue samples with 2000 genes [1].

We evaluated the following classifiers:

I Support Vector Machines with linear, polynomial and RBF kernels [2],

IHiknn with k = 5 and Euclidean distance [6],

IClassification with logistic regression a�er projection to 10 randomly

selected base points (Figure 2),

IHomogenous progress ensemble of 1000 projection classifiers.

We report the accuracy of the classifiers averaged over 10×10-fold cross-

validation in Figure 3 and Table 1.
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Figure 3: Average accuracy of classifiers over 10×10-fold cross-validation.

Breast Cancer Colon Cancer

Best SVM linear 87.56% polynomial 83.33%

Hiknn − 83.22% • − 85.50%

Single projection − 83.44% • − 83.67%

Progress ensemble − 88.44% − 86.83% ◦

Table 1: Best-performing classifiers and their accuracies. Significantly be�er accuracy

than SVM is denoted by ◦, while significantly worse accuracy is denoted by •. Statistical

significance was evaluated by two-tailed permutation test at p < 0.05.

Conclusions and Outlook

IOur preliminary results show that the progress projection ensemle can

outperform Support Vector Machines and hubness-aware hiknn on gene

expression data sets.

IOn the Breast Cancer data set, progress delivered the highest accuracy.

IOn the Colon Cancer data set, both hiknn and progress outperformed

SVMs, but only progress outperformed them significantly.

IAs future work, we plan to explore data pre-processing for classification

and learning of distance functions.
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