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Background Experimental Evaluation

Gene expression profiles were found to be highly relevant for safety assess- In our ongoing research, we ran classification experiments on two publicly

ment, diagnostics and prognostics applications [1,5]. Recent advancements available data sets:

in high-throughput sequencing technology lead to growing interest in pre- > The Breast Cancer data set consists of 32 ER- and 65 ER+ specimens

dictive classification (see Figure 1) models for gene expression data. For from breast cancer patients with 7650 genes [5].

example, lon AmpliSeq'™ technology delivers simple and fast library con- » The Colon Cancer data set consists of 40 colon tumor tissue samples
\struction for affordable targeted sequencing of specific human genes [3]. ) and 22 normal colon tissue samples with 2000 genes [1].

We evaluated the following classifiers:

“Class labels” — A B A A > Support Vector Machines with linear, polynomial and RBF kernels [2],
» HikNN with k = 5 and Euclidean distance [6],

Train c(ata: :>/ Learning A > Classification with logistic regression after projection to 10 randomly
gene expressions ol algorithm selected base points (Figure 2),
patients with known status - / .. .
» Homogenous PROGRESS ensemble of 1000 projection classifiers.
to construct the model -
We report the accuracy of the classifiers averaged over 10x10-fold cross-
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Figure 3: Average accuracy of classifiers over 10x10-fold cross-validation.

> A gene expression instance may contain expression values of thousands

of genes. Therefore, instances are represented as vectors in very high- Breast Cancer Colon Cancer

dimensional Euclidean space. Best SVM linear 87.56% polynomial 83.33%
> Hubness is a phenomenon in high-dimensional data sets, such as gene HIKNN — 83.22% o — 85.50%

expression data, that challenges classification algorithms [4]. Single projection — 83.44% e — 83.67%
» Hubs are instances that are similar to a suprisingly large number of other PROGRESS ensemble — 88.44%  — 86.83% o

instances according to some measure of similarity, e.g. Euclidean distance
d(xi, %) = /> _(xi0 — x;0)% where x;; is the expression value of the (th
gene in the ith sample.

Table 1: Best-performing classifiers and their accuracies. Significantly better accuracy
than SVM is denoted by o, while significantly worse accuracy is denoted by e. Statistical
significance was evaluated by two-tailed permutation test at p < 0.05.

» Hubness-aware classifiers (hw-kNN, HFNN, NHBNN, HIKNN) [6] are one of the

most promising research directions aiming to enchance classificitation Conclusions and Outlook

in high-dimensional spaces. To compare our approach to hubness-aware

methods, we run HIKNN with parameter k = 5 as a baseline. > Our preliminary results show that the PROGRESS projection ensemle can
\ / outperform Support Vector Machines and hubness-aware HIKNN on gene

expression data sets.

Our Contribution » On the Breast Cancer data set, PROGRESs delivered the highest accuracy.

o . . . . . » On the Colon Cancer data set, both HIKNN and PROGRESS outperformed
> We attempt to mitigate hubness artefacts with dimensionality reduction SVMs, but only PROGRESS outperformed them significantly
via instance projection using base points (see Figure 2). A logistic regression ’ '

classifier is trained on the resulting representation.

> As future work, we plan to explore data pre-processing for classification

. D e , and learning of distance functions.
» Our results show that a single projection classifier has suboptimal accu- N J

racy (see Figure 3 and Table 1). However, it is very simple to construct an
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