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Abstract
In this paper, we present our work towards learn-
ing individualized warping window sizes (WWS)
for time series classification based on dynamic
time warping (DTW). DTW is one of the most
popular distance measures for time series classifi-
cation and it was shown that its warping window
size is crucial for the final accuracy of the model.
WWS is therefore considered as an important pa-
rameter of DTW. In contrast to the previous works,
in which static WWS was used, i.e., the WWS
size was selected for the entire dataset, we pro-
pose a hubness-aware approach to select WWS
for each instance individually. We evaluate our
approach on publicly available real-world datasets
and show that the classification accuracy using in-
dividualized WWS is significantly higher than the
accuracy in case of static WWS.

1. Introduction
Time series classification (TSC) is the common theoretical
background of various recognition tasks such as speech
recognition, handwriting recognition on a touch screen,
or the diagnosis of diseases based on medical time series
(ECG, EEG). Distance-based approaches for TSC range
from nearest neighbor (Xi et al., 2006) and its recent
versions, such as hubness-aware classifiers (Radovanović
et al., 2010; Tomašev et al., 2015), through distance-
based features (Buza et al., 2015; Kate, 2016) and ker-
nel approaches (Meszlényi et al., 2016; Xue et al., 2017)
to convolutional neural networks using DTW-based fea-
tures (Meszlényi et al., 2017). See also Abanda et al. (2019)
for a recent survey on distance-based TSC.

One of the most popular distance measures for TSC is
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Dynamic time warping (DTW), originally introduced for
speech recognition (Sakoe & Chiba, 1978). When compar-
ing two time series, DTW aims at matching local patterns
while allowing for shifts and elongations between the two
time series. The amount of allowed shifts and elongations is
controlled by the warping window size (WWS), a parameter
of DTW.

Originally, the warping window was introduced for computa-
tional reasons (in order to calculate an approximation of the
actual DTW distance with an order of magnitude less compu-
tations) and it was considered a “necessary evil” (Ratanama-
hatana & Keogh, 2005). However, after surveying “more
than 500 papers”, Ratanamahatana & Keogh (2005) con-
cluded that a relatively narrow warping window is “neces-
sary for accurate DTW”. This resulted in the wide-spread
use of a default WWS of 5% or 10%.

Recently, the role of the warping window size has been
examined more thoroughly and the analysis showed that
the appropriate selection of WWS may be crucial for the
accuracy of DTW-based classifiers (Dau et al., 2018). All
the aforementioned works considered a static WWS: the
same warping window size was used for the entire dataset,
i.e., for all the time series of the dataset.

In contrast, we argue that an individualized selection of the
warping window size may be beneficial. In particular, we
propose to select the appropriate WWS for each time series
separately, similarly to the case of individualized selection
of the number of nearest neighbors (Buza et al., 2010). In
this paper, we propose a hubness-aware approach for the in-
dividualized selection of WWS. We perform experiments on
publicly available real-world time series datasets and show
that the proposed individualized WWS leads to significantly
better results on various challenging datasets.

The rest of this paper is organized as follows. In order to
make sure that our work is self-contained, Section 2 reviews
dynamic time warping. This is followed by the description
of our approach (Section 3) and experiments (Section 4).
We draw conclusions in Section 5.

2. Dynamic Time Warping
In simple cases (e.g. Euclidean distance), the distance of two
time series T1 = (x
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is calculated in a way that each x
(1)
i is compared to x

(2)
i and

the results of these comparisons are aggregated.

However, when observing a phenomenon several times, the
corresponding characteristic patterns may not appear at the
exactly same time position, and events’ duration may also
vary slightly. In order to address these challenges, DTW
allows for shifts and elongations, i.e., x(1)

i is compared to
x
(2)
j where i may be different from j.

The calculation of the DTW distance (Sakoe & Chiba, 1978)
is implemented as filling the entries of an L1 × L2 matrix.
Each entry of the matrix corresponds to the distance between
a prefix of T1 and a prefix of T2. In particular, the value in
the i-th row and j-th column, denoted as di,j , corresponds
to the distance between T ′1 = (x
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i ) and T ′2 =

(x
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j ), and it is calculated as follows:

di,j = de(x
(1)
i , x

(2)
j )+min {di,j−1, di−1,j , di−1,j−1} (1)

where the terms of the minimum correspond to the cases
of elongation in T1, T2 or matching the next elements in
both time series; de(x

(1)
i , x

(2)
j ) is the elementary distance

between observations x(1)
i and x

(2)
j . In our current work

de(x
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i − x
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j |,

but we note that other variants exist, such as the squared
difference between x

(1)
i and x

(2)
j .

The entries di,j of the matrix can be calculated in a column-
wise fashion, i.e., in this order: d1,1, d2,1, . . . , dL1,1, d1,2,
d2,2, . . . , dL1,2, . . .dL1,L2 . The first entry of the matrix, d1,1,
is initialized as d1,1 = de(x

(1)
1 , x

(2)
1 ). In the cases, where

some of the terms di,j−1, di−1,j , di−1,j−1 are undefined
(i.e., if i − 1 = 0 or j − 1 = 0), they are excluded from
Eq. (1). Finally, the DTW distance of time series T1 and T2

equals to dL1,L2
.

An example for the calculation of DTW is shown in Fig. 1.

In most applications, it may not be reasonable to allow
for arbitrarily large shifts and elongations, therefore, the
calculations are usually restricted to the entries around the
diagonal of the matrix, i.e.,

di,j is calculated ⇔ |i− j| ≤ w,

where w is the warping window size which controls the
amount of allowed shifts and elongations.

With full DTW we refer to the case when the above re-
striction is not made (or equivalently: when w is set to
the maximum of the length of the two time series that are
compared).

Figure 1. Example for the calculation of the DTW-matrix. a) The
DTW-matrix. The time series T1 and T2 are shown on the left and
top of the matrix. The marked entries of the matrix correspond to
the mapping between the both time series. b) The calculation of
the value of an entry.

3. Our Approach
Our approach for the individualized selection of the appro-
priate WWS is based on how frequently time series appear
as good and bad neighbors. Following (Tomašev et al.,
2015), we define good (bad, resp.) k-nearest neighbors as
follows: a time series T is a good (bad, respectively) k-
nearest neighbor of another time series T ′ if T is a k-nearest
neighbor of T ′ and their class labels are the same (different,
respectively). Note that the nearest neighbor relationship
is asymmetric, i.e., if T is one of the k-nearest neighbors
of T ′, it does not mean that T ′ is also one of the k-nearest
neighbor of T . Therefore a time series may appear more or
less than k-times as nearest neighbor of other time series.
Roughly speaking, time series that appear surprisingly often
as one of the (good/bad) k-nearest neighbors of other time
series, are called (good/bad) hubs. In order to quantify this
phenomenon, given a time series T , we use GNk(T ) and
BNk(T ) to denote how many times T appears as one of the
good/bad k-nearest neighbor of other time series. As the set
of k-nearest neighbors depends on WWS, we use GNk,w(T )
and BNk,w(T ) to denote GNk(T ) and BNk(T ) calculated
with DTW using warping window size w.

For a time series T , we determine the individualized
WWS as follows: we consider warping window sizes
0, 1, . . . , wmax, where wmax is 10% of the length of T .
For each WWS, we determine NDk,w(T ), which denotes the
set of k-nearest neighbors of T in the training set D calcu-
lated using DTW with warping window size w. For each
T ′ ∈ NDk,w(T ), we calculate GNk,w(T

′) and BNk,w(T
′).

Finally, we select wbest that maximizes∑
T ′∈ND

k,w
(T )

GNk,w(T
′)−BNk,w(T

′). (2)

In case of ties, i.e., if several WWS have the same score in
terms of Formula (2), out of the warping window sizes with
maximal score, the lowest one is selected.

Our approach is summarized in Algorithm 1.
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Algorithm 1 Individualized warping window size selection
for a time series T

Input: set of labelled training time series D,
time series T , number of nearest neighbors k

wmax = 0.1· length(T )
wbest = 0
scorebest = 0

for each w ∈ 0, . . . , wmax do
score = 0

# NDk,w(T ) = the set of k-nearest neighbors of T
# among the time series in D, calculated with
# warping window size w

for each T ′ ∈ NDk,w(T ) do
score = score+GNk,w(T

′)−BNk,w(T
′)

# GNk,w(T
′) and BNk,w(T

′) are calculated
# on D with warping window size w

end for

if score > scorebest then
wbest = w
scorebest = score

end if

end for
return wbest

Radovanović et al. (2010) observed that bad hubs are re-
sponsible for a surprisingly large fraction of the total classi-
fication error. Within this framework, our approach can be
seen as a method that searches for the warping window size
wbest which minimizes the detrimental effect of bad hubs
and maximize the positive effect of good hubs.

4. Experiments
We evaluated our approach in context of k-nearest neighbors
classification on five publicly available time series dataset
from the UCR repository1. While the simple nearest neigh-
bors classifier with DTW using a static WWS may perform
well in certain application scenarios, for the purpose of
the evaluation of our approach, we selected datasets that
are challenging for this method. In particular, we used the
ArrowHead, Car, DistalPhalanxOutlineAgeGroup, Distal-
PhalanxTW and DodgerLoopDay datasets.

We performed experiments according to the 10 × 10-fold
cross-validation protocol.2 We classified the test time series

1http://www.timeseriesclassification.com/
2With 10-fold cross-validation, we mean that the data is parti-

tioned into 10 splits, out of which 9 serve as the training data and
the remaining one is used as test data. The experiments are repeated
10-times, in each round of the 10-fold cross-validation, a different

with k-nearest neighbor using DTW distance with individu-
alized selection of the warping window size, i.e., for each
test time series, we selected the appropriate warping window
size with Algorithm 1. We considered two settings of the
number of nearest neighbors: k = 5 and k = 10. We mea-
sured the accuracy, i.e., the ratio of correctly classified time
series, in each of the 10× 10 folds and report the average
accuracy and its standard deviation in Table 1.

We compared the performance of our approach, denoted as
IWW, with that of k-nearest neighbor classification using
DTW distance with a static WWS of 5% and 10% of the
length of the time series.3 We also report results for the
case of calculating the full DTW matrix. In order to judge
whether the difference is statistically significant, we used
paired t-test with p-value of 0.05.

The results in Table 1 show that our approach significantly
outperformed the baselines in the vast majority of the ex-
amined cases. There are only two exceptions: once our
approach outperformed the baselines, but the difference was
not significant (DistalPhalanxOutlineAgeGroup, k = 5),
while in case of DistalPhalanxTW with k = 10, the base-
lines performed better, but the difference is not significant.

5. Conclusions and Outlook
In this work, we focused on the warping window size for
DTW distance. We proposed an approach to select the
warping window size for each time series individually. Our
approach selects the warping window size in a way that
minimize the detrimental effect of bad hubs, which were
shown to account for a surprisingly large fraction of the
overall classification error.

We implemented our experiments in Python and used
Cython in oder to calculate DTW distances efficiently. Ad-
ditional optimization may be required for large scale exper-
iments and real-world applications, including the approxi-
mation of GNk,w(T ) and BNk,w(T ) values using nearest
neighbor descent (Bratić et al., 2018).

In our future work, we plan to investigate further scoring
functions based on GNk,w(T ) and BNk,w(T ) and perform
experiments in context of other classifiers and applications
(i.e., on additional datasets).
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split is used as test data. With 10 × 10-fold cross-validation we
mean that the above 10-fold cross-validation is repeated 10-times,
each time using a different initial partitioning of the data.

3We note that we also performed experiments with static WWS
of 1% and 0% (Manhattan distance). As these results did not
change the conclusions, we omit them for simplicity.
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Table 1. Classification accuracy (averaged over the 10× 10 folds) ± its standard deviation for k-nearest neighbor in case of calculating
full DTW, DTW with global warping widow sizes of 5% and 10% and individualized warping window sizes (IWW). The best approach is
underlined. The symbols • and ◦ denote whether the difference between IWW and the baselines is statistically significant (•) or not (◦)
based on paired t-test with p-value of 0.05.

DATASET FULL DTW WWS=5 % WWS=10 % IWW

k = 5

ARROWHEAD 0.794±0.087 0.817±0.078 0.799±0.087 0.871±0.072 • / • / •
CAR 0.672±0.120 0.708±0.136 0.685±0.116 0.747±0.105 • / • / •
DISTALPHALANXOUTLINEAGEGROUP 0.819±0.049 0.817±0.047 0.818±0.049 0.824±0.042 ◦ / ◦ / ◦
DISTALPHALANXTW 0.725±0.053 0.727±0.052 0.727±0.052 0.753±0.052 • / • / •
DODGERLOOPDAY 0.398±0.125 0.448±0.127 0.411±0.126 0.537±0.121 • / • / •

k = 10

ARROWHEAD 0.792±0.083 0.819±0.075 0.800±0.084 0.870±0.069 • / • / •
CAR 0.612±0.139 0.680±0.134 0.624±0.141 0.697±0.134 • / • / •
DISTALPHALANXOUTLINEAGEGROUP 0.808±0.048 0.813±0.046 0.808±0.048 0.821±0.044 • / • / •
DISTALPHALANXTW 0.752±0.051 0.752±0.051 0.752±0.051 0.749±0.051 ◦ / ◦ / ◦
DODGERLOOPDAY 0.384±0.125 0.405±0.106 0.375±0.122 0.510±0.113 • / • / •
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Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., and
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state fmri functional connectivity-based classification us-
ing a convolutional neural network architecture. Frontiers
in Neuroinformatics, 11:61, 2017.
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