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Abstract: The presence of hubs, i.e., a few vertices that appear as neighbors of surprisingly
many other vertices, is a recently explored property of nearest neighbor graphs. Several
Authors argue that the presence of hubs should be taken into account for various data mining
tasks, such as classification, clustering or instance selection. In this paper, we review recent
works on hubness-aware instance selection for classification. We refer to applications of the
reviewed techniques, such as time series classification or the analysis of biomedical data.
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1 Introduction

Most prominent data mining tasks include classification and clustering. Classification is the common
denominator of various recognition tasks such as signature verification [1], [2], speech and handwriting
recognition [3], [4], [5]. For example, in case of handwriting recognition, the user is writing a symbol on
the touch screen of a tablet or smartphone while the device is recording the tip’s position at consecutive
moments of time, e.g. 100 times per second. The positions can be described quantitatively by the
horizontal and vertical coordinates of the points where the screen is touched. This results in a sequence
of measured numerical values (horizontal and vertical coordinates). Based on this information, the device
aims to automatically recognize which character was written by the user.

Similar recognition tasks arise in various other domains. For example, biomedical devices, such as
electroencephalograph (EEG) and electrocardiograph (ECG) capture the electrical activity of the brain
and heart respectively, and based on the data recorded by these devices, one may try to recognize or pre-
dict the events related to diseases such as epileptic seizures or irregular heart beats [6], [7]. Furthermore,
one may try to recognize subtypes of diseases based on gene expression data [8]. Further recognition
tasks of the same type are related to texts and images [9], [10].

In order to solve the aforementioned recognition and prediction tasks, due to the large amount of
underlying data and/or the required recognition speed, human experts usually need to be assisted by
automated recognition systems. Many state-of-the-art solutions are based on machine learning: a recog-
nition model, called classifier, is constructed based on previously collected data and evidence (such as
which sequence of positions corresponds to which handwritten symbol, or which medical signal corre-
sponds to which disease, where are the symptoms of that disease expressed in the data).

Nearest neighbor classifiers* are among the most promising classifiers due to multiple reasons. First,
there are theoretical performance guarantees for the accuracy of nearest neighbor models [11], [12]. Sec-
ond, they have been shown to be competitive, if not superior, to many other, more complex classifiers in
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*We will describe nearest neighbor classifiers in the subsequent section in more detail.



various applications, see e.g. [13] and the references therein. Third, unlike in case of many other classi-
fiers, nearest neighbors deliver human-understandable explanations for their predictions in form of a set
of similar instances (i.e., similar signals, text, images, gene expression vectors, etc., depending on the
current application). Fourth, in order to perform nearest neighbor classification, solely an appropriate
distance (or similarity) measure between the instances of the dataset is required, the instances do not need
to be represented in a vector space. For example, dynamic time warping [5], Levenshtein distance [14]
and Smith-Waterman [15] distance work directly on time series, texts and genetic sequences respectively,
without the need for representing the data in a vector space. Moreover, nearest neighbor classifiers are
intuitive and simple to implement, which may be relevant aspects in real-world applications. Therefore,
we focus on nearest neighbor classification, and its hubness-aware extensions in this talk.

2 Background

The problem of classification can be stated as follows. We are given a set of instances and some groups.
The groups are called classes, and they are denoted as C1, ..., C,,. Each instance x belongs to one of the
classes. Whenever = belongs to class C;, we say that the class label of x is C;. We denote the set of all
the classes by C, i.e., C = {C1,...,Cp}. Let D be a dataset of instances z; and their class labels y;, i.e.,
D= {(x1,y1) .. (Tp,yn)}. We are given a dataset D"%" called training data. The task of classification
is to induce a function f(z), called classifier, which is able to assign class labels to instances not contained
in Dtrain.

In real-world applications, for some instances we know (from measurements and/or historical data) to
which classes they belong, while the class labels of other instances are unknown. Based on the data with
known classes, we induce a classifier, and use it to determine the class labels of the rest of the instances.

In experimental settings we usually aim at measuring the performance of a classifier. Therefore, after
inducing the classifier using D"*", we use a second dataset D**, called test data: for the instances of
Dtest we compare the output of the classifier, i.e., the predicted class labels, with the true class labels,
and calculate the accuracy of classification. Therefore, the task of classification can be defined formally
as follows: given two datasets D" and D!, the task of classification is to induce a classifier f(z) that
maximizes prediction accuracy for D****. For the induction of f(z), however, solely D!"%" can be used,
but not D¥est,

Next, we describe the k-nearest neighbor classifier (¢kNN). Suppose, we are given an instance z* € D5t
that should be classified. The kNN classifier searches for those k instances of the training dataset that
are most similar to z*. These k most similar instances are called the k nearest neighbors of x*. The
kNN classifier considers the k nearest neighbors, and takes the majority vote of their labels and assigns
this label to z*: e.g. if K = 3 and two of the nearest neighbors of 2* belong to class C7, while one of the
nearest neighbors of x belongs to class Cs, then this 3-NN classifier recognizes z* as an instance belonging
to the class Cy. We use Ny (z) to denote the set of k nearest neighbors of z. Ny (z) is also called as the
k-neighborhood of x.

3 Presence of Hubs

The presence of hubs, i.e., instances that occur surprisingly frequently as neighbors of other instances,
has been observed in various natural and artificial networks, such as protein-protein-interaction networks
or the internet [16]. In case of nearest neighbor classification, we consider the nearest neighbor graph,
in which vertices correspond to instances of the dataset and there is an edge from vertex v, to vertex
v, if instance z is one of the k nearest neighbors of instance z. An example for such a nearest neighbor
graph with £ = 1 is shown in Figure 1. The presence of hubs in nearest neighbor graphs has been
confirmed in various contexts, such as text mining, music retrieval and recommendation, image data and
time series [17, 18, 19, 20, 21].

In context of classification, hubness was discussed in [22, 23, 24]. The property of hubness states that
for data with high (intrinsic) dimensionality, a few instances tend to become nearest neighbors surprisingly



Figure 1: Nearest neighbor graph with £ = 1. Directed edges point from each instance to its first nearest
neighbor. The number next to each instance denotes the in-degree of the vertex, i.e., how many times
the corresponding instance appears as nearest neighbor of other instances.

frequently, while other instances (almost) never appear as nearest neighbors. Intuitively speaking, very
frequent neighbors, or hubs, dominate the neighbor sets and therefore, in the context of similarity-based
learning, they represent the centers of influence within the data. For example in Figure 1 the instance
that appears as nearest neighbor of three other instances can be considered as a hub. In contrast to hubs,
there are instances that rarely occur as nearest neighbors of other instances. Such contributing little to
the analytic process. We will refer to them as orphans or anti-hubs.

In order to express hubness more precisely, for a dataset D one can define the k-occurrence of an
instance zfromD, denoted by Ni(x), as the number of other instances in D having x among their k
nearest neighbors:

Ni(2) = Hailw € Ni(zi)}- (1)

With the term hubness we refer to the phenomenon that the distribution of Ny (z) becomes significantly
skewed to the right. We can measure this skewness, denoted by Sy, (,), with the standardized third
moment of N (z):

E[(N(7) — v @)’]
kT

where (i, () and o, () are the mean and standard deviation of the distribution of Ny (z). When Sy, (2)
is higher than zero, the corresponding distribution is skewed to the right and starts presenting a long tail.

In the presence of class labels, we distinguish between good hubness and bad hubness: we say that the
instance x’ is a good k-nearest neighbor of the instance z, if (i) «’ is one of the k-nearest neighbors of z,
and (ii) both have the same class labels. Similarly: we say that the instance z’ is a bad k-nearest neighbor
of the instance z, if (i) 2’ is one of the k-nearest neighbors of z, and (ii) they have different class labels.
This allows us to define good (bad) k-occurrence of an instance x, GNy(z) (and BNy (z) respectively),
which is the number of other instances that have z as one of their good (bad respectively) k-nearest
neighbors. According to empirical results, both distributions GNy(z) and BNg(x) are usually skewed,
as it is exemplified in Fig. 2, which depicts the distribution of GN;(z) for some time series datasets from
the UCR collectiont. As shown, the distributions have long tails in which the good hubs occur.

We say that an instance z is a good (or bad) hub, if GNy(z) (or BNy (x) respectively) is exceptionally
large for x. For nearest neighbor classification, the skewness of good occurrence is of particular impor-
tance, because some few instances are responsible for large portion of the overall error: bad hubs tend to
misclassify a surprisingly large number of other instances [21]. Therefore, one has to take into account the
presence of good and bad hubs. While the kNN classifier is frequently used for time series classification,
the k-nearest neighbor approach is also well suited for learning under class imbalance, see e.g. [10] and
the references therein, therefore hubness is relevant for the classification of imbalanced data too.

As hubs appear in data with high (intrinsic) dimensionality, hubness is one of the recently explored
aspects of the curse of dimensionality [22], [23], [24]. However, dimensionality reduction can not entirely

Thttp://www.cs.ucr.edu/~eamonn/time_series_data,/
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Figure 2: Distribution of GNy(z) for some time series datasets. The horizontal axis corresponds to the
values of GN;(x), while on the vertical axis one can see how many instances have that value.

eliminate the issue of bad hubs, unless it induces significant information loss by reducing to a very low
dimensional space - which often ends up hurting system performance even more [22], [25].

4 Hubness-aware Instance Selection

One drawback of nearest neighbor classifiers is that in case of large datasets it may become computa-
tionally expensive to classify instances if the instance to be classified has to be compared with all the
instances of the training dataset, especially if the distance measure is computationally expensive such as
dynamic time warping in case of time-series classification [13].

Attempts to speed up nearest neighbor classification fall into four major categories: i) speed-up the
calculation of the distance measure, ii) indexing, iii) manipulation of the instances (such as reduction
of the length of time series in case of time-series classification), and iv) instance selection. As discussed
in [13], these approaches are orthogonal, i.e., they can be combined with each other. Here, we focus on
instance selection.

Instance selection (also known as numerosity reduction or prototype selection) aims at discarding
most of the training time series while keeping only the most informative ones, which are then used
to classify unlabeled instances. Previous works on instance selection for nearest-neighbor classification
include [26], [27], [28], [29], [30], [31].

Our hubness-aware instance selection technique, INSIGHT [32], performs instance selection by assign-
ing a score to each instance and selecting instances with the highest scores. Therefore the ”intelligence”
of INSIGHT is hidden in the applied score function. In this section, we explain the suitability of score
functions in the light of the hubness property.

Good 1-occurrence Score INSIGHT can use scores that take the good 1-occurrence of an instance
z into account. Thus, a simple score function is the good I-occurrence score gg(z):

9c(z) = GN1(z) (3)

Relative Score Even if an instance x is a good hub, it may appear as bad neighbor of several other
instances. Thus, INSIGHT can also consider scores that take bad occurrences into account. This leads
to scores that relate the good occurrence of an instance x to either its total occurrence or to its bad
occurrence. For simplicity, we use the following relative score, however, other variants are possible too:



Relative score gr(z) of a time series x is the fraction of good 1-occurrences and total occurrences plus
one (plus one in the denominator avoids potential division by zero):

GNl(ZZ?)

- Ni(z)+1 )

gr(z)

Xi’s Score Interestingly, GNy(z) and BNy (x) allows us to interpret the ranking criterion used by Xi
et al. in FastAWARD [31] as another form of score for relative hubness:

gXi(-T) = GNl(.T) — QBNl(.T) (5)

Despite its simplicity, INSIGHT was reported to achieve surprisingly good classification accuracy,
outperforming the Fast AWARD instance selection technique both in terms of accuracy and runtime [32].

5 Hubness-aware classification and clustering

The phenomenon of hubness may also be taken into account in order to increase classification accuracy.
Therefore, hubness-aware classifiers have been proposed, such as hw-kNN [21], [23], Hubness-based Fuzzy
Nearest Neighbor (HFNN) [36], Naive Hubness Bayesian Nearest Neighbor (NHBNN) [37], and Hubness
Information k-Nearest Neighbor (HIKNN) [38]. These classifiers were surveyed in [39]. Instance selection
has been studied in context of the aforementioned hubness-aware classifiers and it has been found that
parameters, such as Ny (z), GNi(x) and BNy (x) are worth to be estimated on the entire dataset, however,
at classification time it is enough if the classifiers work with the selected instances which results in
computationally less expensive classification [40]. Hubness-aware classifiers were studied in case of class-
imbalanced and noisy data [10],[41]. According to recent results, hubness seems to be relevant in context
of semi-supervised classification and ensemble learning [42],[43]. Regarding further data mining tasks, we
mention that clustering algorithms have been introduced recently [44]. Implementations of hubness-aware
data mining algorithms are available in the HubMiner library at

http://ailab.ijs.si/nenad_tomasev /hub-miner-library/
and
https://github.com/datapoet /hubminer .

6 Conclusion and Outlook

In this paper, we described hubness as an interesting property of nearest neighbor graphs. We argued
that this property, especially the presence of bad hubs, should be taken into account for various data
mining tasks and reviewed the most relevant works in the literature, many of them being empirical
studies. Studies on the theoretical foundations of hubness focus on the intrinsic dimensionality of the
datasets. Much less is known about the mechanisms that generate nearest neighbor graphs containing
hubs: although, based on preferential selection, Barabasi gave a generative model which is able to explain
many natural networks containing hubs [16], nearest neighbor graphs are special because each node has
an out-degree of k which is not captured by the aforementioned generative model. The author is not
aware of a generative model that are able to properly describe nearest neighbor graphs containing hubs.
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