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Introduction

* Time series classification: common theoretical background
of various recognition tasks, including recognition tasks
related to EEG, such as

* recognition of stimulus, or
* recognition of the sympthoms of a disease.

 DTW-based methods are popular for time series
classification (in the computer science literature)
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Dynamic Time Warping (DTW)

Euclidean distance

* Dissimilarity measure for time series
that allows for shifts and elongations I
* The maximum allowed warping is \/\/

controlled by the warping window size

(WWS)
» According to (Dau et al., 2018), /\/\/

appropriate setting of WWS is essential —
WWS

Sakoe, H. and Chiba, S: Dynamic programming algorithm optimization for spoken word recognition,
IEEE Transactions on Acoustics, Speech, and Signal processing, 26 (1):43—-49, 1978.
K. Buza: Time Series Classification and its Applications. 8th International Conference on Web

Intelligence, Mining and Semantics, 2018.
Dau et al.: Optimizing dynamic time warping’s window width for time series data mining

applications. Data Mining and Knowledge Discovery, 1-47, 2018.
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s the WWS Essential in case of EEG?
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AUC of 1-nearest neighbor for various channels

(a) with warping window size of 5 time slots (=78 ms), and

(b) in case of arbitrary warping (no explicit limit on the allowed
shifts and elongations)
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s the WWS Essential in case of EEG?
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AUC of 1-nearest neighbor as function of the warping window size
(in time slots) for channels P3 (left) and P7 (right)
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s the WWS Essential in case of EEG?
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AUC for averaging 100 projection-based predictions, each one
using 100 selected (reference) signals in case of channels P3 (left)
and P7 (right)

Buza et al.: PROCESS: Projection-based classification of electroencephalograph signals.
International Conference on Artificial Intelligence and Soft Computing, 91-100, 2015.
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s the WWS Essential in case of EEG?

 Short answer: no, it isn’t.

* Answer in one sentence (conclusion):

According to our observations, the warping window size is
not crucial, as long as it is not set to an extremely low value,
such as zero.

buza@biointelligence.hu 7



TELEKOM INNOVATION LABORATORIES T-Labs @ ELTE  http:/t-labs.elte.hu/

Supplementary Slides
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DTW Matrix
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PROCESS
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Buza et al.: PROCESS: Projection-based classification of electroencephalograph signals.
International Conference on Artificial Intelligence and Soft Computing, 91-100, 2015.
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Experimental Settings

Data: EEG Database from UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets/eeg+database

Classifiers (recognition methods):
* nearest neighbor
 PROCESS

Goal: disease recognition

Protocol: patient-based 10-fold cross-validation

Evaluation metric: area under receiver operator
characteristic curve (AUC)
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