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1  Summary
EEG classification is the common theoretical background 
of various EEG-related recognition tasks, such as the 
recognition of symptoms of diseases. We consider these 
tasks as time series classification tasks for which models 
based on dynamic time warping (DTW) are popular and 
effective. 
According to Dau et al. (2018), setting the appropriate 
warping window size (WWS) is crucial for the accuracy in 
various applications [1]. 
We examined whether the WWS is crucial in case of 
EEG classification. We considered two DTW-based 
methods, nearest neighbor (NN) and PROCESS [2]. We 
performed disease recognition experiments on a publicly-
available dataset [3] according to patient-based 10-fold 
cross-validation and measured the area under receiver 
operator characteristic curve (AUC) for both models with 
various WWS. 
A reasonably high accuracy is achieved in a relatively 
wide rage of WWS, although WWS should not be set to 
zero. The AUC of the best examined model was around 
0.9 which we achieved with relatively low WWS 
corresponding to approximately 125 milliseconds. 
Our observations indicate that in case of EEG 
classification, the examined classifiers are much less 
sensitive to the WWS than suggested by Dau et al.
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3  Training 

Fig. 1. Dynamic time warping

Fig. 2. Projection of signals (PROCESS)

3  Results

Fig. 3.  AUC of 1-NN for various channels with 
(a) warping window size of 5 time slots (≈78 ms), and 

(b) without warping window
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Fig. 4.  AUC of 1-NN as function of the warping window 
size (in time slots) for channels P3 (left) and P7 (right)

Fig. 5.  AUC for averaging 100 projection-based 
predictions, each one using 100 selected (reference) 

signals in case of channels P3 (left) and P7 (right)
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