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Abstract. As shown by various studies, the dynamics of typing on a
keyboard is characteristic to persons. On the one hand, this may allow
for person identification based on keystroke dynamics in various appli-
cations. On the other hand, in certain situations, such as chat-based
anonymous helplines, web search for sensitive topics, etc., users may not
want to reveal their identity. In general, there are various methods to
increase the protection of personal data. In this paper, we propose the
concept of privacy-aware keyboard, i.e., a keyboard which transmits key-
board events (such as pressing or releasing of a key) with small random
delays in order to ensure that the identity of the user is difficult to be in-
ferred from her typing dynamics. We use real-world keystroke dynamics
data in order to simulate privacy-aware keyboards with uniformly ran-
dom delay and Gaussian delay. The experimental results indicate that
the proposed techniques may have an important contribution to keeping
the anonymity of users.
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1 Introduction

The dynamics of typing is known to be characteristic to persons [1–4]. While
person identification based on keystroke dynamics may be desired in many ap-
plications, such as internet banking or online tax declaration [5], however, it may
happen that the users want to remain anonymous.

As an example, let us consider the case of web search. The keywords used
when searching the web, may reveal sensitive information about the users and
their interests [6]. In particular, searching for particular diseases and symptoms
may be an indication of health status, other keywords may allow to infer polit-
ical or religious views of users, etc. We assume an attacker, who wants to gain
access to such sensitive information and wants to link the pieces of information
to persons. Obviously, IP-addresses linked to search queries may be highly in-
formative, however, due to shared usage of computers and dynamic allocation of
IP-addresses, they may not allow to identify users uniquely. Nevertheless, it may
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be possible to distinguish different users of the same computer (or the same IP-
address, respectively) based on their keystroke dynamics. We note that keystroke
dynamics may simply be captured by scripts running in the web browser, and
the user is not likely to notice the activation of such scripts.

In order to contribute to the protection of the private information, we pro-
pose the concept of privacy-aware keyboard, by which we mean a keyboard that
transmits keyboard events (such as pressing or releasing a key) with small ran-
dom delays in order to ensure that the identity of the user is difficult to be
inferred from her typing dynamics.

We perform experiments using real-world keystroke dynamics data in order
to simulate privacy-aware keyboards choosing the delay from various random
distributions such as uniform and Gaussian. The experimental results indicate
that the identity of the users is much more difficult to be recognized in case
of the privacy-aware keyboard, and therefore the proposed techniques may sub-
stantially contribute to the keeping the anonymity of users.

2 Problem Formulation

We assume an attacker whose goal is to identify the user who typed a particular
text (such as keywords in the aforementioned web search scenario, or sentences
in case of chat-based helplines). The attacker is able

– to run a script in the web browser that captures keystroke dynamics, and
– to use similarity-based models in order to compare keystroke dynamics.

On the one hand, we want to prevent the attacker from achieving his goal by the
usage of a keyboard that transmits keyboard events with small random delays,
causing the captured keystroke dynamics data to become corrupted. On the
other hand, we want the corrupted keystroke dynamics data to look “natural”,
so that the attacker believes that he might be able to identify the user based on
that data, and therefore he will not use other person identification techniques.

3 Our Privacy-aware Keyboard Models

Next, we define two privacy-aware keyboard models: the Uniformly Random
Delay Keyboard and the Gaussian Keyboard.

After each keyboard event e (such as pressing or releasing of a key), both
types of keyboards chose a random number de, and wait for de milliseconds
before transmitting the signal indicating that event e occurred. The keyboards
preserve the order of events: that is, in case if event e1 occurs at time t1 and event
e2 occurs at time t2 and the random delay d1 was generated for event e1, then
the random delay of d2 to be generated for event e2 must fulfill: t1+d1 < t2+d2.
From which follows that d2 > t1 − t2 + d1.

The uniformly random delay keyboard chooses the random number de uni-
formly from the interval [max(0, tpre − te + dpre) , dmax], where te and tpre are
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the times (in milliseconds) when event e and the previous event happened, dpre
is the random number generated for the previous event and dmax is the maximal
delay which is a parameter of this keyboard model.

The delay de associated with event e in case of the Gaussian Keyboard is
max(G(µ, σ) , tpre − te + dpre), where G(µ, σ) is a random number generated
from a Gaussian distribution with mean µ and standard deviation σ, which are
parameters of this keyboard model. Symbols te, tpre and dpre denote the same
as in case of the Uniformly Random Delay Keyboard.

4 Experiments

We begin this section by the introduction of our keystroke dynamics data which
we used to simulate privacy-aware keyboards. This is followed by the description
of the experimental settings and results.

4.1 Typing Dynamics Data

We collected keystroke dynamics data, or typing patterns for short, from 12
different users over several months, resulting in a collection of 548 typing patterns
in total. In each of the typing sessions3, the users were asked to type the following
short text based on the English Wikipedia page about Neil Armstrong:

That’s one small step for a man, one giant leap for mankind. Armstrong prepared
his famous epigram on his own. In a post-flight press conference, he said that he
decided on the words just prior to leaving the lunar module.

In each typing session, we measured the duration of each keystroke, i.e.,
the time between pressing and releasing a key. We used a self-made JavaScript
application and a PHP script to capture the aforementioned time series and to
save the data. We mention that the length of typing patterns varies slightly from
session to session due to typing errors.

4.2 Experimental Settings

The primary goal of our experiments was to show that privacy-aware keyboards
indeed make person identification difficult. In order to do that, we simulate
privacy-aware keyboard by adding noise to the data according to the privacy-
aware keyboard models. Specifically, we will show that the accuracy of person
identification decreases dramatically in case of privacy-aware keyboards, con-
cretely, the accuracy in case of privacy-aware keyboards is close to the accuracy

3 The number of typing sessions was approximately the same for each user. Despite the
fact that the data is balanced, the recognition of the user based on typing dynamics
could lead to an imbalanced classification task, for example in case if binary classifiers
are used according to the one-vs-rest schema.
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Fig. 1. Accuracy (in %) of person identification in case of Uniformly Random Delay
Keyboard as function of the maximal delay dmax. The accuracy in case of a regular
keyboard (labeled as “No delay”) as well as the accuracy of random guessing are shown
for comparison.

of random guessing. Furthermore, in order to allow to draw more general conclu-
sions that are valid to any similarity-based algorithm, we analyze the similarities
between the typing patterns both in case of the same user, as well as in case
of different users, both for the original data, and the data “corrupted” by the
privacy-aware keyboard models.

In principle, one could measure the accuracy of person identification in con-
text of various classifiers, such as neural networks [7, 8], Hidden Markov Mod-
els [9], ensembles [10–13], or classifiers designed for imbalanced data [14, 15], see
also [16] for a survey on data stream mining. However, we decided to use near-
est neighbor classifiers in our experiments, because keystroke dynamics data are
time series and, in case of time series data, the 1-nearest neighbor classifier (1NN)
with dynamic time warping (DTW) as distance measure was shown to be com-
petitive with complex models, such as neural networks, Hidden Markov Models
or “super-kernel fusion scheme”[17, 18]. These empirical results are justified by
theoretical analysis as well [19, 20]. Thus, 1NN with DTW can be considered as
a representative of time-series classifiers. Furthermore, taking into account that
1NN is popular and simple to implement, we can assume that an attacker is
likely to use this classifiers for person identification.

For the classification experiments, we used the first five typing patterns from
each user as training data, and the remaining typing patterns were used as test
data. This is consistent with the assumption that the attacker may have access
to a few typing patterns from the past, while the attacker may not be able
to observe the typing dynamics of a user for a very long time without being
noticed. We note that the same data and train-test splits are used in the Person
Identification Challenge.4

4 http://biointelligence.hu/typing-challenge/
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Fig. 2. Accuracy (in %) of person identification in case of Gaussian Keyboard as func-
tion of σ when µ = 100 ms. The accuracy in case of a regular keyboard (labeled as
“No delay”) as well as the accuracy of random guessing are shown for comparison.

Both for regular and privacy-aware keyboards, we measured classification
accuracy, i.e., the proportion of typing patterns for which the user was correctly
recognized based on the dynamics of her typing.

Additionally to presenting results of 1NN classification, we examine the simi-
larity of typing patterns as well. In particular we show the median, the 10th and
90th percentiles of DTW distances both in case of the original data, as well as
in case of the data corrupted according to our privacy-aware keyboard models.

4.3 Experimental Results

Fig. 1 and Fig. 2 show the accuracy of person identification, i.e., the proportion
of correctly identified users, for our privacy-aware keyboard models as function
of maximal delay dmax (in case of the Uniformly Random Delay Keyboard) and
σ (in case of the Gaussian Keyboard). For comparison, the accuracy in case of
a regular keyboard (labeled as “No delay”) as well as the accuracy of random
guessing5 are shown as well.

As expected, the accuracy of person identification decreases with increasing
maximal delay in case of the Uniformly Random Delay Keyboard. Most im-
portantly, already in case of a delay of 200ms, the accuracy is close to that of
random guessing. Taking the speed of typing into account, the delay of 200ms
seems to be acceptable for most of the users. Increasing σ in case of the Gaussian
Keyboard has a similar effect.

5 With random guessing we mean a naive classifier that works as follows: for each
typing pattern x of the test data, is selects one of the users randomly (each user
has an equal probability to be selected), and this randomly selected user, denoted as

y
(rnd)
x , is the prediction of the classifier. That is: according to the “guess” of this naive

classifier, the typing pattern x belongs to the randomly selected user y
(rnd)
x . As there

are 12 users in our dataset, with a probability of 1/12 the randomly selected user
will match the true user associated with the typing pattern, therefore, the accuracy
of random guessing is 1/12.
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Fig. 3. Median, 10th percentile and 90th percentile of DTW-distances between typing
patterns of the same user and different users in the following cases: regular keyboard
(labeled as “No delay”), Uniformly Random Delay Keyboard and Gaussian Keyboard.

Fig. 3 shows the median, 10th percentile and 90th percentile of DTW-distances
between typing patterns of the same user and different users in the follow-
ing cases: (i) regular keyboard, (ii) Uniformly Random Delay Keyboard with
dmax = 200 and Gaussian Keyboard with µ = 100 and σ = 100. While the DTW-
distances are generally larger in case of the privacy-aware keyboards, from the
point of view of privacy-aware keyboards, the most important is that the range
of distances between typing patterns of the same user almost perfectly overlap
with the range of distances between the typing patterns of different users. This
makes person identification difficult (if not impossible) for any model that is
based on the distances (or similarities) between typing patterns.

5 Conclusions and Outlook

In this paper, we proposed the concept of privacy-aware keyboards, and we
discussed two privacy-aware keyboard models. In our experiments, we simulated
privacy-aware keyboards by adding noise to real-world keystroke dynamics data.
The analysis shows that privacy-aware keyboards indeed make different users’
typing patterns to appear much more similar to each other and therefore it
becomes difficult for any similarity-based algorithm to distinguish users when
privacy-aware keyboards are used.

We note that typing dynamics may be characterized by various features.
For example, instead of measuring the duration of each keystroke (i.e., the time
between pressing and releasing each key), one may measure the time between
consecutive keystrokes (dwell times). In fact, we performed similar experiments
in case of such data as well, and our observations are in accordance with the
results reported in Section 4.3 for keystroke duration data.



7

Furthermore, it has to be pointed out that increasing usage of smartphones
and tablets underline the importance of the protection of personal information.
We argue that a combination of various techniques may be necessary: for ex-
ample, if the user forbids an app to read unique identifiers of the device, the
app may still try to identify the user based on heuristics, such as the keystroke
dynamics, on which we focused in this paper.

While a detailed study of the realization of privacy-aware keyboards are
out of scope of this paper, we note that most devices with Android and iOS
systems have touch screens which measure pressure as well [1]. Therefore, on such
systems, one should pay attention to add noise to the pressure information as
well. Furthermore, when the privacy-aware keyboard is realized in a software, it is
necessary that it captures keyboard events (or touch screen events, respectively)
before any other application of the system. As this may be difficult to ensure,
we believe that in cases of laptops and desktop computers, it may be more
safe to realize a privacy-aware keyboard within the hardware, i.e., in the actual
keyboard of the computer.
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