# Convolutional neural networks with dynamic convolution for time series classification

Krisztian Buza, Margit Antal Department of Mathematics-Informatics Sapientia Hungarian University of Transylvania Targu Mures, Romania buza@biointelligence.hu, manyi@ms.sapientia.ro

### Introduction: time series classification

#### Example: Signature Verification



#### Image: https://commons.wikimedia.org/wiki/File:Online signture.jpg

### Introduction: time series classification

#### Example: Signature Verification



#### Image: https://commons.wikimedia.org/wiki/File:Online signture.jpg

#### Introduction: time series classification

#### Example: Signature Verification



Buza, Antal: Convolutional neural networks with dynamic convolution for time series classification buza@biointelligence.hu

### Time series classification methods

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classication: a review. Data Mining and Knowledge Discovery 33(4), pp. 917 – 963 (2019)

Buza, K.: Time series classification and its applications. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1 - 4 (2018)

## Convolution with max pooling





#### translations of local patterns: irregular robustness

### **Dynamic convolution**



#### Our contribution

- Dynamic convolution
  - Replace dot product in convolution by dynamic time warping calculations
- Neural networks with dynamic convolution
  - Replace the first convolutional layer by a *dynamic* convolutional layer

## Experimental evaluation

- Data: real-world time series datasets from "The UEA & UCR Time Series Classification Repository" – www.timeseriesclassification.com
- Two convolutional neural network architectures: Net1 and Net2
- Two version of both Net1 and Net2:
  - (a) with conventional convolution
  - (b) with dynamic convolution
- 10-fold cross-validation, t-test
- Codes: https://github.com/kr7/DCNN

# Results

| Dataset      | Net1                |                               | Net2              |                             |
|--------------|---------------------|-------------------------------|-------------------|-----------------------------|
|              | CNN                 | DCNN                          | CNN               | DCNN                        |
| Adiac        | $0.506 \pm 0.061$   | $0.575 {\pm} 0.046 \bullet$   | $0.558 \pm 0.052$ | $0.640 {\pm} 0.055 \bullet$ |
| ArrowHead    | $0.886 \pm 0.064$   | $0.896{\pm}0.083$ $\circ$     | $0.900{\pm}0.062$ | $0.887 {\pm} 0.082$ $\circ$ |
| Beef         | $0.733 \pm 0.170$   | $0.800 {\pm} 0.163 \bullet$   | $0.700 \pm 0.180$ | $0.783 {\pm} 0.130 \bullet$ |
| EarthQuakes  | $0.725 {\pm} 0.042$ | $0.733{\pm}0.069$ $\circ$     | $0.699 \pm 0.072$ | $0.731{\pm}0.063$ $\circ$   |
| ECG200       | $0.870 {\pm} 0.050$ | $0.890{\pm}0.044{\rm ~\circ}$ | $0.865 \pm 0.084$ | $0.870{\pm}0.064$ $\circ$   |
| FiftyWords   | $0.702 \pm 0.033$   | $0.714{\pm}0.045$ $\circ$     | $0.686 \pm 0.034$ | $0.715 {\pm} 0.027 \bullet$ |
| Plane        | $0.981 {\pm} 0.032$ | $0.990{\pm}0.029$ $\circ$     | $0.976 \pm 0.032$ | $0.995{\pm}0.014$ •         |
| SwedishLeaf  | $0.864{\pm}0.041$   | $0.883 {\pm} 0.027 \bullet$   | $0.862 \pm 0.036$ | $0.881{\pm}0.033$ $\circ$   |
| WordSynonyms | $0.682 {\pm} 0.031$ | $0.714{\pm}0.050$ •           | $0.681 \pm 0.049$ | $0.727 {\pm} 0.047 \bullet$ |
| Yoga         | $0.951 {\pm} 0.013$ | $0.960 {\pm} 0.012 \bullet$   | $0.945 \pm 0.022$ | $0.959{\pm}0.008$ $\circ$   |
|              | 1                   |                               |                   |                             |

#### Conclusions

- Dynamic convolution: dynamic time warping calculations instead of dot product
- Our experimental evaluation shows that neural networks with dynamic convolution outperform "usual" convolutional neural networks in case of various time series classification tasks
- Codes: https://github.com/kr7/DCNN