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Abstract. Time series forecasting techniques range from ARIMA over
exponential smoothing to neural approaches, such as convolutional neu-
ral networks. However, most of them were designed to work with reg-
ularly sampled and complete time series, i.e., time series which can be
represented as a sequence of numbers without missing values. In con-
trast, we consider the task of forecasting irregularly sampled time se-
ries in this paper. We argue that, compared with “usual” convolution,
sparsity-invariant convolution is better suited for the case of irregularly
sampled time series, therefore, we propose to use neural networks with
sparsity-invariant convolution. We perform experiments on 30 publicly-
available real-world time series datasets and show that sparsity-invariant
convolution significantly improves the performance of convolutional neu-
ral networks in case of forecasting irregularly sampled time series. In
order to support reproduction, independent validation and follow-up
works, we made our implementation (software code) publicly available
at https://github.com/kr7/timeseriesforecast-siconv .

Keywords: time series forecasting · convolutional neural network · sparsity-
invariant convolution

1 Introduction

Due to its prominent applications in medicine [9], retail [15], finance [10] and
other domains [4], time series forecasting has been a key area of research. Time
series forecasting techniques range from the well-known autoregressive models [2]
over exponential smoothing [8] to approaches based on deep learning [12], [19].
Among the numerous methods, a prominent family of methods include forecast
techniques based on convolutional neural networks (CNNs) [1], [16].

In ideal cases, under the assumption that a reliable sensor is installed, mea-
surements are made continuously or periodically with constant time between
subsequent observations. In such cases, time series can be represented as se-
quences of numbers without missing values. However, in real-world applications,
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sensors are not fully reliable due to various reasons ranging from the capacity of
the battery over weather conditions to hardware failures and signal transmission
issues. In other cases (e.g. measuring the blood pressure at the family doctor),
the measurements are done semi-regularly, thus the time between consecutive
observations varies. Consequently, many real-world time series, for example in
healthcare [22], finance [17] and meteorology [14], are irregularly sampled.

The vast majority of conventional time series forecasting techniques, includ-
ing methods based on deep learning, consider time series as sequences of numbers
without missing values. This corresponds to the assumption that the time series
are regularly sampled and complete. Lim and Zohren [12] point out that “deep
neural networks typically require time series to be discretised at regular inter-
vals, making it difficult to forecast datasets where observations can be missing
or arrive at random intervals.” They also note that the domain of irregularly
sampled time series is understudied.

In this paper we propose to use convolutional neural networks (CNNs) with
sparsity-invariant convolution for forecasting irregularly sampled time series. In
experiments on 30 publicly available real-world datasets from various domains,
we show that CNNs with sparsity invariant convolution outperform “usual”
CNNs, both in terms of mean squared error and mean average error, when it
comes to forecasting irregularly sampled time series.

The reminder of the paper is organized as follows. In Section 2, we provide a
short discussion of related works. We describe our approach in Section 3, followed
by the experimental evaluation is Section 4. Finally, we conclude in Section 5.

2 Related Work

Convolutional neural networks have been widely used for classification and fore-
casting of time series, see e.g. [1], [3], [6]. Works that are most closely related
to ours fall into two categories: (i) methods based on convolutional neural net-
works for time series forecasting and (ii) approaches based on sparsity-invariant
convolution.

As for the works in the former category, we refer to the recent surveys of
Lim et al. [12], Sezer et al. [17] and Torres et al. [19] and we point out that our
approach is orthogonal to such works in the sense that one could replace con-
volutional layers in any convolutional network by sparsity-invariant convolution
if the data (or its hidden representation, i.e., the input of a convolutional layer
within the network) is sparse.

Regarding the works on sparsity-invariant convolution, we note that the op-
eration of sparsity-invariant convolution has originally been introduced in the
depth completion (a.k.a. 3D reconstruction) community [20] where a few pixels
of an image are associated with distance information, thus the distance informa-
tion corresponds to sparse data [23]. While various models with sparsity-invariant
convolution have been shown to outperform their counterparts with “usual” con-
volution, see e.g. [13], to the best of our knowledge, ours is the first work that
studies sparsity-invariant convolution in the domain of time series.
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3 Our Approach

We begin this section with a formal definition of our task followed by the de-
scription of sparsity-invariant convolution in the context of time series.

3.1 Problem Formulation

Given an observed time series x = (x1, . . . , xl) of length l, we aim at predicting
its subsequent h values y = (xl+1, . . . , xl+h). We say that h is the forecast horizon
and y is the target. Furthermore, we assume that a dataset D is given which
contains n time series with the corresponding target:

D = {(x(i), y(i))ni=1}. (1)

We use D to train neural networks for the aforementioned prediction task. We
say that x(i) is the input of the neural network.

In our experiments, we assume that an independent datasetD∗ is given which
can be used to evaluate the predictions of our model. Similarly to D, dataset D∗

contains pairs of input and target time series. D∗ is called the test set.

The above sequence x1, . . . , xl corresponds to a regularly sampled time se-
ries. To account for the fact that time series may be irregularly sampled, we
allow for missing values in the aforementioned time series, i.e., each xi within
x = (x1, . . . , xl) is either a real number or a symbol indicating that the value is
missing. We assume that time series are represented at a relatively high resolu-
tion so that all the actual observations may be mapped to one of the symbols
in the sequence x1, . . . , xl, while most symbols of the sequence denote missing
values. In real-world applications, the ratio of missing values may be as high as
90% or even more [5].

3.2 SiConv: Sparsity-invariant Convolution

Considering convolutional neural networks working with data containing missing
values, it may be useful to encode the missing values by zeros because in this case
the multiplication of a missing value (i.e., a zero) by the corresponding weight
results in zero and therefore the missing values are ignored in the weighted sum
calculated by the convolutional layer, which is an intuitive behaviour. Further-
more, treating missing values as zeros is also inline with dropout, a widely-used
regularisation for deep neural networks [18]. For these reasons, we follow the
wide-spread convention of denoting missing values by zeros [13], [20].

The intuition behind sparsity-invariant convolution [20] is to normalize the
output of the convolutional layer according to the number of its non-missing
inputs. As we focus on time series forecasting in this paper, we describe sparsity-
invariant convolution, denoted as SiConv for simplicity, in the context of time
series. Denoting the input of SiConv as xin = (xin

1 , . . . , xin
l ), the size of the
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Fig. 1. Illustration of sparsity-invariant convolution (SiConv). The input and output
time series of SiConv are shown in the top and bottom, respectively. The convolutional
filter in the center is expected to detect a decreasing trend. Compared to “usual”
convolution, the difference is that the output values are divided by the number of non-
missing input values.

convolutional filter as s, the output xout = (xout
1 , . . . , xout

l−s+1) of SiConv can be
calculated as follows:

xout
i =


b+

s∑
j=0

wjx
in
i+j

zi
if zi ̸= 0

0 otherwise

, (2)

where

zi =

s∑
j=0

I(xin
i+j ̸= 0), (3)

while b and wj denote the bias and weights of the convolutional filter; I is an
indicator function that returns 1 if its argument is true, otherwise it returns zero,
therefore zi is the number of the non-zero (i.e., non-missing) inputs of SiConv
within the i-th convolutional window. SiConv is illustrated in Fig. 1.

We note that in case if there are no missing values in the input of SiConv,
SiConv is equivalent to “usual” convolution up to the scaling factor zi = s. On
the other hand, for those segments of the time series, where all the inputs of
SiConv are missing values (zeros) within the convolutional window, the output
of SiConv is zero which denotes a missing value according to our encoding. For
these reasons, we may use SiConv not only in the first convolutional layer, but
in subsequent convolutional layers as well, especially in case of highly sparse
input. In such cases, each convolutional layer with SiConv decreases the ratio of
missing values in the hidden representation.

Representing irregularly sampled time series at a relatively high resolution
results in sequences containing lot of missing values. In such cases, SiConv is
more suited than “usual” convolution by its design. Therefore, we propose to
use SiConv in neural networks for forecasting irregularly sampled time series.



SiConv for Irregularly Sampled Time Series 5

4 Experimental Evaluation

The goal of our experiments is to examine the effect of SiConv on the forecast
performance.

4.1 Experimental Settings

Datasets We performed experiments on 30 real-world time series datasets from
various domains. These datasets are publicly available in The UEA & UCR Time
Series Classification Repository.3 The datasets used in our experiments are listed
in the first column on Tab. 1 and Tab. 2. For all the datasets, we considered a
forecast horizon of h = 16. We trained the models to predict the last h values of
the time series based on its previous values.

Baselines In order to assess the contribution of SiConv, in all our experiments,
we trained three versions of the same convolutional neural network: (i) with
SiConv, (ii) with “usual” convolution and (iii) with “usual” convolution and
linear interpolation of the missing values.

Experimental Protocol We performed experiments according to the 10-fold
cross-validation protocol. That is: we initially partition the data into 10 splits.4

Out of them, 9 splits are used as training data, while the remaining one is used as
test data. The process is repeated 10-times: in each round of the cross-validation,
a different split plays the role of the test set.

Evaluation Metrics We evaluated the predicted time series both in terms of
mean squared error (MSE) and mean absolute error (MAE). MSE and MAE
were calculated as follows:

MSE =
∑

(x,y)∈D∗

∑
yi∈y,
yi ̸=0

(ŷi − yi)
2

N
(4)

MAE =
∑

(x,y)∈D∗

∑
yi∈y,
yi ̸=0

|ŷi − yi|
N

(5)

where D∗ denotes the test dataset, x is an instance of the test set and y is
the corresponding target (roughly speaking: x contain the “past” values of the

3 https://www.timeseriesclassification.com
4 In our case, each time series dataset contains several time series. For example, the
ECG5000 dataset contains in total 5000 time series, and each of these 5000 time
series have a length of 140. In order to avoid data leakage [7], when partitioning
data, an entire time series is assigned to one of the splits. For each time series
belonging to the test split, we aim to predict its last h values. The segment we aim
to predict is unknown to the model.
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Table 1. Mean squared error (averaged over 10 folds) ± its standard deviation in
case of our approach (SiCNN) and the baselines (CNN, linCNN) at a sparsity level
of SL = 80%. Lower values indicate better performance. For each dataset, the best
approach is underlined. For SiCNN, we provide two symbols in the form of ◦/◦ which
denote whether the difference between CNN and linCNN is statistically significant (•)
or not (◦) according to paired t-test at significance level of p = 0.01.

Dataset CNN linCNN SiCNN

Adiac 0.0220 ± 0.0036 0.1347 ± 0.0400 0.0224 ± 0.0034 ◦/•
ArrowHead 0.0397 ± 0.0122 0.3289 ± 0.1052 0.0376 ± 0.0092 ◦/•
BeetleFly 0.4711 ± 0.2805 0.4872 ± 0.2996 0.4671 ± 0.2687 ◦/◦
BirdChicken 0.3893 ± 0.2224 0.6731 ± 0.2880 0.3480 ± 0.1709 ◦/•
BME 0.0699 ± 0.0209 0.0586 ± 0.0163 0.0735 ± 0.0202 ◦/◦
CincECGTorso 0.0750 ± 0.0231 0.0612 ± 0.0195 0.0702 ± 0.0204 ◦/◦
DiatomSizeReduction 0.0133 ± 0.0040 0.7714 ± 0.1710 0.0144 ± 0.0050 ◦/•
ECG200 0.2918 ± 0.1194 0.2980 ± 0.1414 0.2780 ± 0.1069 ◦/◦
ECG5000 0.7821 ± 0.0671 1.9665 ± 0.1601 0.6645 ± 0.0414 •/•
ECGFiveDays 0.0371 ± 0.0054 0.0661 ± 0.0075 0.0305 ± 0.0039 •/•
FacesUCR 1.7111 ± 0.1581 1.7151 ± 0.1620 1.6909 ± 0.1076 ◦/◦
FiftyWords 0.1670 ± 0.0447 0.2988 ± 0.0684 0.1664 ± 0.0466 ◦/•
GunPoint 0.0675 ± 0.0381 0.3287 ± 0.1501 0.0763 ± 0.0387 ◦/•
Haptics 1.5011 ± 0.5241 20.124 ± 8.8588 1.3942 ± 0.5036 ◦/•
InlineSkate 0.1426 ± 0.0631 0.3934 ± 0.1382 0.1504 ± 0.0705 ◦/•
Lightning2 0.1598 ± 0.0837 0.3014 ± 0.0898 0.1511 ± 0.0703 ◦/•
Lightning7 0.4505 ± 0.2166 0.5815 ± 0.3696 0.4549 ± 0.2800 ◦/•
Mallat 0.0187 ± 0.0012 0.7913 ± 0.8176 0.0183 ± 0.0016 ◦/◦
MedicalImages 0.1324 ± 0.0403 0.1565 ± 0.0638 0.1240 ± 0.0410 ◦/◦
MoteStrain 0.7120 ± 0.0916 0.9816 ± 0.1341 0.6299 ± 0.0957 •/•
OSULeaf 0.3063 ± 0.0724 0.6940 ± 0.1614 0.2786 ± 0.0627 •/•
Phoneme 2.6407 ± 0.2944 2.5916 ± 0.5279 2.3227 ± 0.3087 •/◦
Plane 0.0932 ± 0.0435 0.3603 ± 0.1098 0.0896 ± 0.0479 ◦/•
PowerCons 1.6712 ± 0.3403 2.4377 ± 0.7643 1.5449 ± 0.3347 ◦/•
Symbols 0.1063 ± 0.0161 0.6541 ± 0.0592 0.0819 ± 0.0138 •/•
SwedishLeaf 0.1392 ± 0.0166 0.2674 ± 0.0670 0.1278 ± 0.0195 ◦/•
Trace 0.0113 ± 0.0027 0.3073 ± 0.0526 0.0085 ± 0.0023 •/•
TwoLeadECG 0.0441 ± 0.0059 0.1507 ± 0.0292 0.0336 ± 0.0041 •/•
WordSynonyms 0.6195 ± 0.0467 0.7266 ± 0.0846 0.4990 ± 0.0565 •/•
Worms 0.8910 ± 0.2081 1.3738 ± 0.4375 0.9053 ± 0.1951 ◦/•
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Table 2. Mean absolute error (averaged over 10 folds) ± its standard deviation in
case of our approach (SiCNN) and the baselines (CNN, linCNN) at a sparsity level
of SL = 80%. Lower values indicate better performance. For each dataset, the best
approach is underlined. For SiCNN, we provide two symbols in the form of ◦/◦ which
denote whether the difference between CNN and linCNN is statistically significant (•)
or not (◦) according to paired t-test at significance level of p = 0.01.

Dataset CNN linCNN SiCNN

Adiac 0.1107 ± 0.0094 0.2780 ± 0.0335 0.1124 ± 0.0073 ◦/•
ArrowHead 0.1438 ± 0.0222 0.4636 ± 0.1077 0.1430 ± 0.0178 ◦/•
BeetleFly 0.5735 ± 0.1761 0.5923 ± 0.1956 0.5652 ± 0.1853 ◦/◦
BirdChicken 0.4880 ± 0.1510 0.6739 ± 0.1666 0.4825 ± 0.1222 ◦/•
BME 0.1636 ± 0.0257 0.1631 ± 0.0194 0.1696 ± 0.0259 ◦/◦
CincECGTorso 0.1697 ± 0.0292 0.1716 ± 0.0205 0.1625 ± 0.0262 ◦/◦
DiatomSizeReduction 0.0865 ± 0.0069 0.8229 ± 0.1091 0.0902 ± 0.0097 ◦/•
ECG200 0.3903 ± 0.0642 0.3676 ± 0.0650 0.3691 ± 0.0589 ◦/◦
ECG5000 0.6298 ± 0.0270 1.0300 ± 0.0351 0.5746 ± 0.0183 •/•
ECGFiveDays 0.1461 ± 0.0111 0.2101 ± 0.0176 0.1326 ± 0.0090 •/•
FacesUCR 0.9919 ± 0.0399 1.0092 ± 0.0325 0.9893 ± 0.0221 ◦/◦
FiftyWords 0.2911 ± 0.0283 0.4238 ± 0.0563 0.2898 ± 0.0253 ◦/•
GunPoint 0.1772 ± 0.0396 0.4871 ± 0.1294 0.1860 ± 0.0345 ◦/•
Haptics 0.7583 ± 0.0634 3.2173 ± 0.8438 0.7309 ± 0.0630 ◦/•
InlineSkate 0.2500 ± 0.0328 0.4578 ± 0.1057 0.2574 ± 0.0432 ◦/•
Lightning2 0.2796 ± 0.0486 0.4604 ± 0.0716 0.2828 ± 0.0456 ◦/•
Lightning7 0.4437 ± 0.0935 0.5169 ± 0.1302 0.4418 ± 0.1008 ◦/•
Mallat 0.1068 ± 0.0034 0.7263 ± 0.3777 0.1061 ± 0.0043 ◦/•
MedicalImages 0.2402 ± 0.0214 0.2701 ± 0.0357 0.2340 ± 0.0176 ◦/•
MoteStrain 0.6083 ± 0.0314 0.7850 ± 0.0620 0.5651 ± 0.0331 •/•
OSULeaf 0.4249 ± 0.0572 0.6612 ± 0.0809 0.4140 ± 0.0491 ◦/•
Phoneme 1.1828 ± 0.0501 1.1544 ± 0.1294 1.0860 ± 0.0557 •/◦
Plane 0.2075 ± 0.0380 0.4073 ± 0.0633 0.2064 ± 0.0355 ◦/•
PowerCons 0.9842 ± 0.0896 1.1170 ± 0.2191 0.9371 ± 0.0848 ◦/◦
SwedishLeaf 0.2832 ± 0.0178 0.3940 ± 0.0537 0.2722 ± 0.0185 ◦/•
Symbols 0.2508 ± 0.0159 0.7049 ± 0.0399 0.2160 ± 0.0150 •/•
Trace 0.0842 ± 0.0110 0.5317 ± 0.0519 0.0743 ± 0.0116 ◦/•
TwoLeadECG 0.1631 ± 0.0082 0.3100 ± 0.0334 0.1426 ± 0.0075 •/•
WordSynonyms 0.5762 ± 0.0210 0.6537 ± 0.0505 0.5127 ± 0.0278 •/•
Worms 0.7596 ± 0.0846 0.9599 ± 0.1548 0.7687 ± 0.0805 ◦/•
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time series, and y contains its “future” values), yi is one of the values to be
forecast (we assume that missing values are denoted by zeros) and ŷi is the
corresponding prediction of the model. N is the number of non-missing values
in the test dataset:

N =
∑

(x,y)∈D∗

∑
yi∈y

I(yi ̸= 0) (6)

Both MSE and MAE were calculated in each of the 10 folds of the cross-
validation. We report the average and standard deviation of MSE and MAE
in Tab. 1 and Tab. 2.

We used paired t-test at significance level (p-value) of 0.01 in order to assess
whether the observed differences between our approach SiCNN and its competi-
tors, CNN and linCNN are statistically significant or not.

Implementation We implemented our neural networks in Python using the
PyTorch framework. In order to support reproduction and follow-up works, we
made our implementation publicly available in a github repository.5 Our code
can be executed in Google Collaboratory6.

4.2 Experiments on Datasets from Various Domains

In order to assess the contribution of SiConv relative to “usual” convolution in
various domains, first, we consider a simple convolutional network containing a
single convolutional layer with 25 filters, followed by a max pooling layer with
window size of 2, and a fully connected layer with 100 units. We set the size of
convolutional filters to 9. The number of units in the output layer corresponds
to the forecast horizon, as each unit is expected to predict one of the numeric
values of the target time series. We trained the networks for 1000 epochs. We
used mean squared error loss and the Adam optimizer [11] with a batch size of 16.
As mentioned previously, we varied the type of convolutinal layer, therefore the
variants of this simple convolutional neural network are denoted as SiCNN, CNN
and linCNN with SiConv, “usual” convolution and “usual” convolution combined
with linear interpolation of missing values, respectively.

As the time series of the aforementioned datasets do not contain missing
values, we randomly selected 80% of the values of each time series and replaced
them by missing values. This is meant by sparsity level SL = 80% in the caption
of Tab. 1 and Tab. 2.

As one can see in Tab. 1 and Tab. 2, in the majority of the examined cases,
SiCNN outperforms it counterparts with “usual” convolution. Moreover, in many
cases SiCNN is statistically significantly better than CNN and linCNN. In partic-
ular, SiCNN significantly outperforms linCNN on 22 datasets in terms of MSE,
and on 23 datasets in terms of MAE. Furthermore, SiCNN is significantly better
than CNN on 9 and 7 datasets in terms of MSE and MAE, respectively. On the

5 https://github.com/kr7/timeseriesforecast-siconv
6 https://colab.research.google.com/
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Fig. 2. MSE and MAE of our approach (SiCNN) and the baseline (CNN) as function
of sparsity level. The width of the colored area corresponds to the standard deviation
of MSE and MAE.

other hand, in those few cases when CNN or linCNN outperform SiCNN, the
difference is not significant statistically.

It is interesting to note that CNN with linear interpolation of missing values
worked worse that CNN without such an interpolation. This may be attributed
to the fact that the actual trend between two observations is not linear and once
the interpolation is performed, the network is not able to distinguish between
true values and interpolated values.

4.3 The Effect of Sparsity Level

Next, we examine the performance of the simple convolutional network from the
previous section in case of various levels of sparsity. For simplicity, we consider
three datasets: GunPoint, MoteStrain and PowerCons. As one can see in Fig. 2,
we observed similar trends in case of all the three datasets. In particular, with
increasing level of sparsity, both the error of our approach (SiCNN) and that of
the baseline (CNN) grows which is expected because it is inherently more difficult
to predict future values of a time series in case if more of its values are missing.
However, we point out that our approach, SiCNN, consistently outperforms CNN
for all the examined levels of sparsity both in terms of MSE and MAE, except
for the GunPoint dataset at sparsity level of 80%.

4.4 Experiments with Deep Convolutional Networks

After considering various neural networks, such as multi-layer perceptions, multi-
scale convolutional neural networks and residual networks, as well as other time
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Table 3. Mean squared error and mean absolute error (averaged over 10 folds) ± their
standard deviation in case of various neural architectures with different types of con-
volution on the GunPoint, MoteStrain and PowerCons datasets at a sparsity level of
SL = 80%. Lower values indicate better performance. For each architecture, the best
approach is underlined. For our approach (SiConv), we provide two symbols in the form
of ◦/◦ which denote whether the difference compared to the same architecture with
(i) “usual” convolution and (ii) “usual” convolution combined with linear interpola-
tion of missing values (abbreviated as “+lin.”) is statistically significant (•) or not (◦)
according to paired t-test at significance level of p = 0.01.

Architecture Convolution GunPoint MoteStrain PowerCons

Mean Squared Error
simple CNN “usual” 0.0675±0.0381 0.7120±0.0916 1.6712±0.3403

“usual”+lin. 0.3287±0.1501 0.9816±0.1341 2.4377±0.7643
SiConv 0.0763±0.0387◦/• 0.6299±0.0957•/• 1.5449±0.3347◦/•

ResNet “usual” 0.2741±0.0872 0.7546±0.1289 1.3002±0.2679
“usual”+lin. 0.5516±0.1041 0.9328±0.1650 2.1404±0.4537
SiConv 0.0866±0.0434•/• 0.6724±0.1357•/• 1.1735±0.2438◦/•

FCN “usual” 0.1135±0.0351 0.6053±0.1393 1.2299±0.2153
“usual”+lin. 0.2567±0.0672 0.7628±0.1670 1.6392±0.4356
SiConv 0.0509±0.0361•/• 0.5901±0.1363•/• 1.1687±0.2438•/•

Mean Absolute Error
simple CNN “usual” 0.1772±0.0396 0.6083±0.0314 0.9842±0.0896

“usual”+lin. 0.4871±0.1294 0.7850±0.0620 1.1170±0.2191
SiConv 0.1860±0.0345◦/• 0.5651±0.0331•/• 0.9371±0.0848◦/◦

ResNet “usual” 0.4038±0.0603 0.5945±0.0231 0.9035±0.0657
“usual”+lin. 0.6040±0.0590 0.6941±0.0415 1.0675±0.1257
SiConv 0.1961±0.0347•/• 0.5409±0.0252•/• 0.8460±0.0617•/•

FCN “usual” 0.2491±0.0289 0.5444±0.0369 0.8809±0.0555
“usual”+lin. 0.4066±0.0553 0.6487±0.0498 0.9200±0.1046
SiConv 0.1218±0.0310•/• 0.5355±0.0362•/• 0.8470±0.0649•/•

series classifiers, namely: “time series based on a bag-of features”, elastic ensem-
ble, 1-nearest neighbor bag-of-SFA-symbols in vector space, shapelet ensemble,
flat-COTE (COTE) and 1-nearest neighbor with dynamic time warping, Wang
et al. [21] found that their “fully convolutional network” (FCN) “achieves pre-
mium performance”, i.e., FCN outperforms all the aforementioned models. Ac-
cording to their observations, the difference between FCN and its competitors
were statistically significant, expect for the second-best model, a residual net-
work, denoted as ResNet. Therefore we decided to experiment with deep neural
networks based on these FCN and ResNet architectures.

As the aforementioned networks were designed for time series classification,
we had to adapt them for time series forecasting. In particular, both in case of
FCN and ResNet, we removed the final global average pooling layer and replaced
it by a fully connected layer in which the number of units corresponds to the
forecast horizon, as each unit is expected to predict one of the numeric values
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of the target time series, just like in case of the simple convolutional networks
considered in Section 4.2.

Tab. 3 shows the performance of deep neural networks on the GunPoint,
MoteStrain and PowerCons datasets in case of a sparsity level of SL = 80%. As
one can see, using SiConv instead of “usual” convolution improves performance
both in case of ResNet and FCN.

5 Conclusion and Outlook

This paper focused on forecasting irregularly sampled time series with convo-
lutional neural networks. We proposed to use sparsity-invariant convolution for
this task. We performed experiments on 30 real-world time series datasets from
various domains with a simple convolutional neural network. Additionally, we
examined the effect of sparsity on the prediction error. We also experimented
with a more advanced neural architecture, called “fully convolutional network”
and a variant of ResNet that had been found to be particularly promising in case
of time series previously. Our results show that convolutional neural networks
with sparsity-invariant convolution systematically outperform their counterparts
with “usual” convolution.

We point out that sparsity-invariant convolution may be used in any convolu-
tional neural network instead of “usual” convolution which makes this operation
attractive for many applications. In order to support reproduction of our results
as well as follow-up works, we published our implementation (software codes) at
https://github.com/kr7/timeseriesforecast-siconv .
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