

TELEKOM INNOVATION LABORATORIES

T-Labs @ ELTE http://t-labs.elte.hu/

Factorization Machines for Blog Feedback Prediction

Krisztian Buza¹ Tomáš Horváth^{1,2}

¹ Telekom Innovation Laboratories, Department of Data Science and Engineering, Faculty of Informatics ELTE - Eötvös Loránd University, Budapest, Hungary, {buza,horvathtamas}@inf.elte.hu ² Institute of Computer Science Faculty of Science Pavol Jozef Šafárik University, Košice, Slovakia

1 Introduction

Blog Feedback Prediction Problem [1]

- early recognition of highly influential blog posts - the number of feedbacks (comments) is used to quantify influence

3 Training

Algorithm 1 Training the Factorization Machine

Require: Training data D, number of epochs e, learning rate η , standard deviation σ **Ensure:** Weights w_0, w_1, \ldots, w_k and $v_{1,1}, \ldots, v_{n,f}$

- 1: Initialize w_0, w_1, \ldots, w_k and $v_{1,1}, \ldots, v_{n,f}$ from standard normal distribution with zero mean and standard deviation σ
- 2: for epoch in $1 \dots e$ do
- for each $(x, y) \in D$ in random order do 3:

4:
$$\hat{y} \leftarrow w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \left(\sum_{k=1}^f v_{i,k} v_{j,k}\right) x_i x_j$$

5:
$$w_0 \leftarrow w_0 - \eta \ 2(\hat{y} - y)$$

: for
$$i$$
 in $1 \dots k$ do

$$: \qquad \qquad w_i \leftarrow w_i - \eta \ 2(\hat{y} - y)x_i$$

9: for
$$i$$
 in $1 \dots n$ do

10: for
$$j$$
 in $1 \dots f$ do

$$v_{i,j} \leftarrow v_{i,j} - \eta \; 2(\hat{y} - y) \Big(x_i \sum_{k=1}^n v_{k,j} x_k - v_{i,j} x_i^2 \Big)$$

15: end for

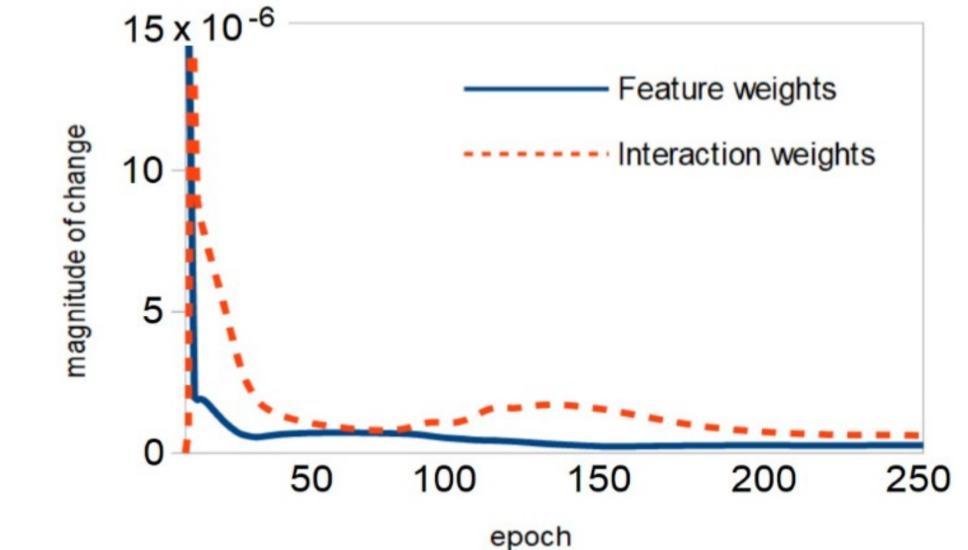
8:

11:

```
16: return w_0, w_1, \ldots, w_k and v_{1,1}, \ldots, v_{n,f}
```

2 Factorization Machine

Given an instance $x = (x_1, \dots, x_n)$, a factorization machine [2] of second degree with *f* factors predicts its label as follows:


$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \left(\sum_{k=1}^f v_{i,k} v_{j,k}\right) x_i x_j$$

where w_0, \ldots, w_n and $v_{1,1}, \ldots, v_{n,f}$ are parameters

Results 4

Data: UCI Repository, Blog Feedback Data*

	Linear regression	FM, $f = 3$
AUC@10	0.864	0.869
Hits@10	4.733	5.117

of the model. The later describe the interactions between features, while we refer to w_1, \ldots, w_n

as feature weights.

Acknowledgement

This work was supported by the project no. 20460-3/2018/ FEKUTSTRAT within the Institutional Excellence Program in Higher Education of the Hungarian Ministry of Human Capacities.

* https://archive.ics.uci.edu/ml/datasets/BlogFeedback

References

[1] Buza, K.: Feedback prediction for blogs. In: Data analysis, machine learning and knowledge discovery, pp. 145–152. Springer (2014)

[2] Rendle, S.: Factorization machines. 10th International Conference on Data Mining (ICDM), pp. 995–1000. IEEE (2010)